Temperatures charts (Heisler charts)

These diagrams are used to infinite bodies to find temperatures distribution and heat flow through plates, cylinders and spheres.
| Nomenclature for one-dimensional solids suddenly subjected to convection environment at T_{∞} : (a) infinite plate of thickness $2 L$; (b) infinite cylinder of radius r_{0}; (c) sphere of radius r_{0}.

$T_{0}=$ centerline temperature
(a)

$T_{0}=$ centerline axis temperature
(b)

$T_{0}=$ center temperature
(c)

These bodies are exposed to a convection condition at $\mathrm{T} \infty$ and center temperature T_{0}.

The Biot number and Fourier number.

Fourier number $=\mathrm{Fo}=\frac{\alpha \tau}{s^{2}}=\frac{k \tau}{\rho c s^{2}}$

For plates $\mathrm{s}=\mathrm{L} \longrightarrow \mathrm{FO}=\frac{\alpha \mathrm{t}}{\mathrm{L}^{2}}$
$\mathrm{Bi}=\frac{\mathrm{h} L}{\mathrm{~K}}$
For cylinders and spheres $\mathrm{s}=\mathrm{r}^{\circ} \longrightarrow \mathrm{FO}=\frac{\alpha \mathrm{t}}{\mathrm{r}^{\circ}{ }^{\circ}}$
$\mathrm{Bi}=\frac{\mathrm{hr} \mathrm{r}^{\circ}}{\mathrm{K}}$

Figures (4-7)to(4-12) are the temperatures of solid as a function to the time.

```
Where: }0=(\textrm{T}-\textrm{T}\infty
0=(T( x,t )-T\infty) (For plates)
0=(T(r,t )-T\infty) (For cylinders and spheres)
0i=(Ti-T\infty)
00}=(\mp@subsup{\textrm{T}}{0}{}-\textrm{T}\infty
```

Figure 4-7 | Midplane temperature for an infinite plate of thickness $2 L$: (a) full scale.

Figure 4-8 | Axis temperature for an infinite cylinder of radius r_{0} : (a) full scale.

Figure 4-9 | Center temperature for a sphere of radius r_{0} : (a) full scale.

Figure 4-10 | Temperature as a function of center temperature in an infinite plate of thickness $2 L$, from Reference 2 .

Figure 4-11| Temperature as a function of axis temperature in an infinite cylinder of radius r_{0}, from Reference 2 .

Figure 4-12 | Temperature as a function of center temperature for a sphere of radius r_{0}, from Reference 2 .

The heat loss for the infinite bodies is given in figures (4-14) to (4-16).
Where: Q_{0} represents the initial internal energy content of the body.
$\mathrm{Q}_{0}=\rho \mathrm{Cp} \vee(\mathrm{Ti}-\mathrm{T} \infty)=\rho \mathrm{Cp} \mathrm{v} \theta_{\mathrm{i}}$
While Q is the actual heat lost by the body

Figure 4-14 | Dimensionless heat loss Q / Q_{0} of an infinite plane of thickness $2 L$ with time,

Figure 4-15 | Dimensionlesss heat loss Q / Q_{0} of an infinite cylinder of radius r_{0} with time,

Figure 4-16 I Dimensionless heat loss Q / Q_{0} of a sphere of radius r_{0} with time,

Notes

- Figures (4-7), (4-8), (4-9) $\quad \mathrm{T}_{0}, \mathrm{Ti}$
- Figures (4-10),(4-11), (4-12) $\longrightarrow \mathrm{T}, \mathrm{T}_{0}$
- Figures (4-14) , (4-15) , (4-16) $\longrightarrow \mathrm{Q}, \mathrm{Q}_{0}$

Applicability of the Heisler charts

The calculations for the Heisler charts were performed by truncating the infinite series solutions for the problems into a few terms. This restricts the applicability of the charts to values of the Fourier number greater than 0.2 .

$$
\mathrm{F}_{0}=\frac{\alpha \tau}{s^{2}}>0.2
$$

Example:

An infinite stainless steel cylinder is heated to uniform temperature of $200{ }^{\circ} \mathrm{C}$ and then allowed to a cool environment where air temperature is $30{ }^{\circ} \mathrm{C}$ and heat transfer coefficient is $200 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$. The cylinder has diameter of 10 cm
a- Calculate the temperature of center after 10 min .
b- Heat loss per meter area.
$\alpha=0.444 * 10^{-5} \mathrm{~m}^{2} / \mathrm{sec} \quad, \rho=7817 \mathrm{~kg} / \mathrm{m}^{3}$,
$\mathrm{Cp}=460 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$,
$\mathrm{K}=16.3 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$

Solution

Test Bi number
$\mathrm{Bi}=\frac{\mathrm{h} *\left(\frac{\mathrm{~V}}{\mathrm{~A}}\right)}{\mathrm{K}}<0.1$
$\frac{\mathrm{v}}{\mathrm{A}}=\frac{\frac{\pi}{4} * \mathrm{~d}^{2} * \mathrm{~L}}{\pi \mathrm{dL}}=\frac{\mathrm{d}}{4}$
$\mathrm{Bi}=\frac{\mathrm{h} *\left(\frac{\mathrm{~V}}{\mathrm{~A}}\right)}{\mathrm{K}}=\frac{200 *\left(\frac{0.1}{4}\right)}{16.3}=0.3>0.1 \longrightarrow$ No lumped heat capacity
$\mathrm{Fo}=\frac{\alpha \mathrm{t}}{\mathrm{r}^{\circ 2}}=\frac{0.444 * 10^{-5} * 600}{0.05^{2}}=1.066$
$\frac{1}{\mathrm{Bi}}=\frac{\mathrm{K}}{\mathrm{hr}^{\circ}}=\frac{16.3}{200 * 0.05}=1.63$
Figure (4-8)
$\frac{\mathrm{T} 0-30}{200-30}=0.406 \longrightarrow \mathrm{~T}_{0}=99.02{ }^{\circ} \mathrm{C}$
Fo. $\mathrm{Bi}^{2}=\frac{\mathrm{h}^{2} \alpha \mathrm{t}}{\mathrm{K}^{2}}=\frac{200^{2} 0.444 * 10^{-5} * 600}{16.3^{2}}=0.4$
Figure (4-15)
$\mathrm{Bi}=\frac{\mathrm{hr} \mathrm{r}^{\circ}}{\mathrm{K}}=\frac{200 * 0.05}{16.3}=0.613$

$$
\frac{\mathrm{Q}}{\mathrm{Q} 0}=0.55
$$

$\frac{\mathrm{Q} 0}{\mathrm{~A}}=\rho \mathrm{Cp} \frac{\mathrm{V}}{\mathrm{A}}(\mathrm{Ti}-\mathrm{T} \infty)$
$=7817 * 460 * \frac{0.1}{4} *(200-30)=15282235 \mathrm{~W} / \mathrm{m}^{2}$
$\frac{\mathrm{Q}}{\mathrm{A}}=\frac{\mathrm{Q} 0}{\mathrm{~A}} * 0.55=8405229.25 \mathrm{~W} / \mathrm{m}^{2}$

Example:

A large plate of aluminum 5.0 cm thick and initially at $200^{\circ} \mathrm{C}$ is suddenly exposed to the convection environment at $70^{\circ} \mathrm{C}$ and heat transfer coefficient is $525 \mathrm{~W} / \mathrm{m}^{2}$. ${ }^{\circ} \mathrm{C}$. Calculate the temperature at a depth of 1.25 cm and 1 min from one of the faces.
$\alpha=8.4 * 10^{-5} \mathrm{~m}^{2} / \mathrm{sec} \quad, \mathrm{K}=215 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$
Solution
$2 \mathrm{~L}=5 \mathrm{~cm}=$ thckness $\longrightarrow \mathrm{L}=2.5 \mathrm{~cm}$
$\mathrm{Fo}=\frac{\alpha \mathrm{t}}{\mathrm{L}^{2}}=\frac{8.4 * 10^{-5} * 60}{0.025^{2}}=8.064$

$$
\frac{\theta 0}{\theta \mathrm{i}}=0.61=\frac{\mathrm{T} 0-\mathrm{T} \infty}{\mathrm{Ti}-\mathrm{T} \infty}
$$

$\mathrm{x}=2.5-1.25=1.25 \mathrm{~cm}$
$\frac{\mathrm{x}}{\mathrm{L}}=\frac{1.25}{2.5}=0.5$
$\frac{1}{\mathrm{Bi}}=\frac{\mathrm{K}}{\mathrm{hL}}=\frac{215}{525 * 0.025}=16.38$
Figure (4-10)
$\frac{\theta 0}{\theta \mathrm{i}}=\frac{\mathrm{T} 0-\mathrm{T} \infty}{\mathrm{Ti}-\mathrm{T} \infty}=0.61 \longrightarrow \frac{\mathrm{~T} 0-\mathrm{T} \infty}{200-70}=0.61 \longrightarrow \frac{\mathrm{~T} 0-\mathrm{T} \infty}{130}=0.61$
$\mathrm{T}_{0}-\mathrm{T} \infty=\theta_{0}=130 * 0.61=79.3$
$\frac{\theta}{\theta 0}=0.98 \longrightarrow \theta=79.3 * 0.98=77.714$
$\theta=\mathrm{T}-\mathrm{T} \infty \longrightarrow 77.714=\mathrm{T}-70 \longrightarrow \mathrm{~T}=147.714^{\circ} \mathrm{C} \quad$ Or
$\frac{\theta 0}{\theta \mathrm{i}} * \frac{\theta}{\theta \mathrm{o}}=\frac{\theta}{\theta \mathrm{i}} \longrightarrow 0.61 * 0.98=0.5978$

$$
\begin{aligned}
& \frac{\theta}{\theta \mathrm{i}}=\frac{\mathrm{T}-\mathrm{T} \infty}{\mathrm{Ti}-\mathrm{T} \infty} \longrightarrow 0.5978=\frac{\mathrm{T}-70}{200-70} \\
& \mathrm{~T}-70=77.714 \longrightarrow \mathrm{~T}=147.714^{\circ} \mathrm{C}
\end{aligned}
$$

H.W

How much energy has been removed per unit area from the plate in this time?
$\rho=2700 \mathrm{~kg} / \mathrm{m}^{3}, \quad \mathrm{Cp}=0.9 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$

Example:

A long aluminum cylinder 5.0 cm in diameter and initially at $200^{\circ} \mathrm{C}$ is suddenly exposed to a convection environment at $70^{\circ} \mathrm{C}$ and $\mathrm{h}=525$ $\mathrm{W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$. Calculate the temperature at a radius of 1.25 cm after 1 min .
$\alpha=8.4 * 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}$
, $\mathrm{K}=215 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$

Solution

$\mathrm{Fo}=\frac{\alpha \mathrm{t}}{\mathrm{r}^{\circ 2}}=\frac{8.4 * 10^{-5} * 60}{0.025^{2}}=8.064$

$$
\begin{aligned}
& \frac{1}{\mathrm{Bi}}=\frac{\mathrm{K}}{\mathrm{hr}}=\frac{215}{525 * 0.025}=16.38 \text { Figure (4-8) } \\
& \frac{\theta 0}{\theta \mathrm{i}}=0.38=\frac{\mathrm{T} 0-\mathrm{T} \infty}{\mathrm{Ti}-\mathrm{T} \infty}
\end{aligned}
$$

$\frac{\mathrm{r}}{\mathrm{r}^{\circ}}=\frac{1.25}{2.5}=0.5$
$\frac{1}{\mathrm{Bi}}=\frac{\mathrm{K}}{\mathrm{hr}} \mathrm{r}^{\circ}=\frac{215}{525 * 0.025}=16.38$
Figure (4-11)
$\frac{\theta}{\theta 0}=0.98=\frac{\mathrm{T}-\mathrm{T} \infty}{\mathrm{T} 0-\mathrm{T} \infty}$
$\frac{\theta 0}{\theta \mathrm{i}} * \frac{\theta}{\theta 0}=\frac{\theta}{\theta \mathrm{i}} \longrightarrow 0.38 * 0.98=0.372$
$\frac{\theta}{\theta \mathrm{i}}=\frac{\mathrm{T}-\mathrm{T} \infty}{\mathrm{Ti}-\mathrm{T} \infty} \longrightarrow 0.372=\frac{\mathrm{T}-70}{200-70}$
$\mathrm{T}-70=48.4 \longrightarrow \mathrm{~T}=118.4^{\circ} \mathrm{C}$

Example:

A large slab of aluminum has a thickness of 10 cm and is initially uniform in temperature at 400° C. Suddenly it is exposed to a convection environment at $90^{\circ} \mathrm{C}$ with $\mathrm{h}=1400 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$. How long does it take the centerline temperature to drop to $180^{\circ} \mathrm{C}$.

Solution

$\alpha=8.418 * 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}$
$2 \mathrm{~L}=10 \mathrm{~cm}=$ thckness $\longrightarrow \quad \begin{gathered} \\ \end{gathered} \quad \mathrm{L}=5 \mathrm{~cm}$
From figure (4-7)
Fo $=\frac{\alpha \mathrm{t}}{\mathrm{L}^{2}}=\frac{8.418 * 10^{-5} * \mathrm{t}}{0.05^{2}}$
$\frac{\theta 0}{\theta \mathrm{i}}=\frac{\mathrm{T} 0-\mathrm{T} \infty}{\mathrm{Ti}-\mathrm{T} \infty}=\frac{180-90}{400-90}=0.29$
$\frac{1}{\mathrm{Bi}}=\frac{\mathrm{K}}{\mathrm{hL}}=\frac{204}{1400 * 0.05}=2.2$
Fo $=4.2$

Figure (4-7)
$4.2=\frac{\alpha \mathrm{t}}{\mathrm{L}^{2}}=\frac{8.418 * 10^{-5} * \mathrm{t}}{0.05^{2}} \longrightarrow \mathrm{t}=125 \mathrm{sec}$

Example:

A short aluminum cylinder 5 cm in diameter and 10 cm thickness is initially at a uniform temperature of $200^{\circ} \mathrm{C}$. It is suddenly subjected to a convection environment at $70^{\circ} \mathrm{C}$, and $\mathrm{h}=525 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$. Calculate the temperature at a radial position of 1.25 cm and a distance of 0.625 cm from one end of the cylinder 1 min after exposure to the environment.
$\alpha=8.4 * 10^{-5} \mathrm{~m}^{2} / \mathrm{sec} \quad, \mathrm{K}=215 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$

Solution

1- For plate
Thickness $=10 \mathrm{~cm} \longrightarrow 2 \mathrm{~L}=10 \longrightarrow \mathrm{~L}=5 \mathrm{~cm}$
$\mathrm{x}=5-0.625=4.375 \mathrm{~cm}$
$\mathrm{Fo}=\frac{\alpha \mathrm{t}}{\mathrm{L}^{2}}=\frac{8.4 * 10^{-5} * 60}{0.05^{2}}=2.016$
Figure (4-7)
$\frac{1}{\mathrm{Bi}}=\frac{\mathrm{K}}{\mathrm{hL}}=\frac{215}{525 * 0.05}=8.19$

$\frac{\mathrm{x}}{\mathrm{L}}=\frac{4.375}{5}=0.875$
$\frac{1}{B i}=\frac{\mathrm{K}}{\mathrm{hL}}=\frac{215}{525 * 0.025}=8.19$
Figure (4-10)
$\left(\frac{\theta}{\theta \mathrm{i}}\right)$ plate $=\left(\frac{\theta 0}{\theta \mathrm{i}}\right)$ plate $*\left(\frac{\theta}{\theta 0}\right)$ plate
$\left(\frac{\theta}{\theta \mathrm{i}}\right)$ plate $=0.75 * 0.95=0.7125$
2- for cylinder
$\mathrm{Fo}=\frac{\alpha \mathrm{t}}{\mathrm{r}^{\circ 2}}=\frac{8.4 * 10^{-5} * 60}{0.025^{2}}=8.064$

$$
\begin{aligned}
\frac{1}{\mathrm{Bi}}=\frac{\mathrm{K}}{\mathrm{~h} \mathrm{r}}=\frac{215}{525 * 0.025}=16.38 \xrightarrow{ } \quad \text { Figure (4-8) } \\
\frac{\theta 0}{\theta \mathrm{i}}=0.38=\frac{\mathrm{T} 0-\mathrm{T} \infty}{\mathrm{Ti}-\mathrm{T} \infty}
\end{aligned}
$$

$$
\frac{\mathrm{r}}{\mathrm{r}^{\circ}}=\frac{1.25}{2.5}=0.5
$$

$$
\frac{1}{\mathrm{Bi}}=\frac{\mathrm{K}}{\mathrm{~h} \mathrm{r}}=\frac{215}{525 * 0.025}=16.38
$$

Figure (4-11)
$\frac{\theta}{\theta 0}=0.98=\frac{\mathrm{T}-\mathrm{T} \infty}{\mathrm{T} 0-\mathrm{T} \infty}$
$\left(\frac{\theta}{\theta \mathrm{i}}\right)$ cylinder $=\left(\frac{\theta 0}{\theta \mathrm{i}}\right)$ cylinder $*\left(\frac{\theta}{\theta 0}\right)$ cylinder
$\left(\frac{\theta}{\theta \mathrm{i}}\right)$ cylinder $=0.38 * 0.98=0.3724$
$\left(\frac{\theta}{\theta \mathrm{i}}\right)$ body $=\left(\frac{\theta}{\theta \mathrm{i}}\right)$ plate $*\left(\frac{\theta}{\theta \mathrm{i}}\right)$ cylinder
$\left(\frac{\theta}{\theta \mathrm{i}}\right)$ body $=0.7125 * 0.3724=0.265$
$\frac{\mathrm{T}-\mathrm{T} \infty}{\mathrm{Ti}-\mathrm{T} \infty}=0.265$
$\frac{\mathrm{T}-70}{200-70}=0.265$
$\mathrm{T}=104.5^{\circ} \mathrm{C}$
Note: as shown in Figures 4-14, 4-15, and 4-16, to obtain the heat for a multidimensional body. The results of this analysis for intersection of two bodies is

$$
\left(\frac{Q}{\varrho_{0}}\right)_{\text {tooal }}=\left(\frac{Q}{\varrho_{0}}\right)_{1}+\left(\frac{Q}{\varrho_{0}}\right)_{2}\left[1-\left(\frac{Q}{\varrho_{0}}\right)_{1}\right]
$$

